Store-Forward and its Implications for Proportional Scheduling

Neil Walton
Switch Networks:

(BP) BackPressure – Classical switch policy

(PS) Proportional Scheduler – New switch policy

(SF) Store-Forward – A Related CTMC

One story:

PS is structurally simpler than BP

But... this talk:

SF is similar to PS and has lots of nice properties.

We study SF to postulate why PS is good:

Equilibrium, Delay, Product-Form, Lyapunov fns.
Switch Networks
Switch Networks
Switch Networks

Communication networks are multihop.
Communication networks are multihop

Two Stabilizing Policies:
1. BackPressure
2. Proportional Scheduler
Switch Networks: BackPressure

Two Steps:
1. Determine weights
 \[w_j(Q) = \max_{k \in j} \{ Q_k - Q_{n(k)}, 0 \} \]
2. Schedule to maximize weights
 \[\text{Max} \sum_{j \in J} w_j(Q) \sigma_j \text{ over } \sigma \in <S> \]
Switch Networks: Proportional Scheduler

Two Steps:

1. Schedule to maximize

\[\text{Max } \sum_{j} Q_j \log \bar{\sigma}_j \text{ over } \bar{\sigma}_\varepsilon < S \]

\[\text{e.g. } \bar{\sigma}_1 = \frac{4}{7}, \quad \bar{\sigma}_0 = \bar{\sigma}_2 = \frac{3}{7}. \]

2. Serve queues with FIFO discipline
The Store–Forward Network is CTMC with feasible service rates

\[\sigma_j^{SF}(Q) = \frac{\Phi(Q - e_j)}{\Phi(Q)} \]

where \(\Phi(Q) \) is a positive function that looks more complicated than it really is.
Switch Networks:

(BP) BackPressure – Classical switch policy
(PS) Proportional Scheduler – New switch policy
(SF) Store-Forward – A Related CTMC

One story:

PS is structurally simpler than BP

But... this talk:

SF is similar to PS and has lots of nice properties.

We study SF to postulate why PS is good:

Equilibrium, Delay, Product-Form, Lyapunov fns.
One Story

![Diagram of a network with a central node and multiple branches]

<table>
<thead>
<tr>
<th>Diameter</th>
<th>BackPressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>D=2</td>
<td>3</td>
</tr>
<tr>
<td>D=4</td>
<td>6</td>
</tr>
<tr>
<td>D=6</td>
<td>12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>$3 \times 2^{(D/2-1)}$</td>
</tr>
</tbody>
</table>
One Story

<table>
<thead>
<tr>
<th>Diameter</th>
<th>BackPressure</th>
<th>Proportional Scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td>D=2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D=4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>D=6</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>$3 \times 2^{(D/2-1)}$</td>
<td>3</td>
</tr>
</tbody>
</table>
One Story

Compared with BackPressure, the Proportional Scheduler:

- requires far less information

![Diagram of two scheduling scenarios](image-url)
One Story

Compared with BackPressure, the Proportional Scheduler:

- requires far less information
- delay scales better
One Story

Compared with BackPressure, the Proportional Scheduler:

• requires far less information

• delay scales better

• is more decentralized
One Story

Compared with BackPressure, the Proportional Scheduler:

- requires far less information
- delay scales better
- is more decentralized
- ... (see W’ 14 Sigmetrics)
Switch Networks:

(BP) BackPressure – Classical switch policy
(PS) Proportional Scheduler – New switch policy
(SF) Store–Forward – Related CTMC

One story:
PS is structurally simpler than BP

But... this talk:
SF is similar to PS and has lots of nice properties.

We study SF to postulate why PS is good:
Equilibrium, Delay, Product–Form, Lyapunov fns.
Comparing BP & PS is not the main point...

• SF & PS are asymptotically equivalent:

\[\sigma^{SF}(Q) \approx \sigma^{PS}(Q), \quad \text{for } Q \text{ large} \]

• SF has good properties. Thus, so should PF.
This talk

PS should inherit lots of properties known for SF...

• Equilibrium Distribution
• Delay
• Product form characterization
• Large deviations
• Lyapunov function
Switch Networks:

(BP) BackPressure – Classical switch policy

(PS) Proportional Scheduler – New switch policy

(SF) Store-Forward – Related CTMC

One story:

PS is structurally simpler than BP

But... this talk:

SF is similar to PF and has lots of nice properties.

We study SF and postulate why PS is good:

Equilibrium, Delay, Product-Form, Lyapunov fns.
FIFO Store-Forward
FIFO Store-Forward
FIFO Store-Forward
We give results for Store-Forward.

For each there’s a conjecture for Proportional Scheduler.

Each result is difficult (or impossible) to establish for BackPressure.
Results on Store-Forward: Equilibrium

Theorem 1: A FIFO routed Store-Forward Network is positive recurrent when \((a_j : j \in \mathcal{J}) \in \langle \mathcal{S} \rangle^\circ\) and has an equilibrium distribution of the form

\[
\pi(Q, \Gamma) = \Phi(Q) \prod_{j \in \mathcal{J}} \prod_{r : j \in r} \left(a_r \Gamma_{jr}(Q_j) \right).
\]
Results on Store-Forward: Equilibrium

Theorem 1: A FIFO routed Store-Forward Network is positive recurrent when \((a_j : j \in \mathcal{J}) \in < \mathcal{S} >^o\) and has an equilibrium distribution of the form

\[
\pi(Q, \Gamma) = \Phi(Q) \prod_{j \in \mathcal{J}} \prod_{r:j \in r} \left(a_r^{\Gamma_{jr}(Q_j)} \right).
\]
Results on Store-Forward: Equilibrium

Theorem 1: A FIFO routed Store-Forward Network is positive recurrent when \((a_j : j \in J) \in <S>^\circ\) and has an equilibrium distribution of the form

\[
\pi(Q, \Gamma) = \Phi(Q) \prod_{j \in J} \prod_{r: j \in r} \left(a_r \Gamma_{jr}(Q_j) \right).
\]
Results on SF: Delay

Theorem 2: For a stationary Store-Forward network, the delay on a route r given by D_r has expectation

$$\mathbb{E}[D_r] = \sum_{j \in r} \sum_{l : j \in l} \frac{A_{lj}}{1 - a_l},$$
Results on SF: Delay

Theorem 2: For a stationary Store-Forward network, the delay on a route r given by D_r has expectation

$$\mathbb{E}[D_r] = \sum_{j \in r} \sum_{l : j \in l} \frac{A_{lj}}{1 - a_l},$$
Results on SF: Delay

Theorem 2: For a stationary Store-Forward network, the delay on a route r given by D_r has expectation

$$
\mathbb{E}[D_r] = \sum_{j \in r} \sum_{l:j \in l} \frac{A_{lj}}{1 - a_l},
$$
Results on SF: Product-Form

Theorem 3: Consider a stationary Store-Forward Network on scheduling set

\[
< S >= \left\{ s \in \mathbb{R}^J_+ : \sum_{j \in J} A_{lj} s_j \leq 1, l \in \mathcal{L} \right\}.
\] \hspace{1cm} (12)

If there are two queues \(j \) and \(j' \) such that there is no shared resource pool, i.e. \(\forall l \in \mathcal{L} \) such that \(A_{lj} > 0 \) and \(A_{lj'} > 0 \), then the queues are statistically independent.
Results on SF: Product-Form

Theorem 3: Consider a stationary Store-Forward Network on scheduling set

\[< S > = \left\{ s \in \mathbb{R}_+^J : \sum_{j \in J} A_{lj} s_j \leq 1, l \in L \right\}. \quad (12) \]

If there are two queues \(j \) and \(j' \) such that there is no share resource pool, i.e. \(\nexists \ l \in L \) such that \(A_{lj} > 0 \) and \(A_{lj'} > 0 \), then the queues are statistically independent.
Grey nodes are independent

i.e. Just need different multipliers, we don’t need product space.

Refs. Kang Kelly Lee Williams ’09, Shah, W., Zhong ’14
Results on SF: Product-Form

Grey nodes are independent

i.e. Just need different multipliers, we don’t need product space.

Refs. Kang Kelly Lee Williams ’09, Shah, W., Zhong ’14
Results on SF: Product-Form

Left-hand nodes are independent of right-hand nodes

i.e. Similar to a Gibbs Random Field / .
Results on SF: Large Deviations

We take a sequence of states \((Q^c, \Gamma^c)\) where

\[
\frac{Q^c}{c} \xrightarrow{c \to \infty} Q \quad \quad \quad \frac{\Gamma^c(cq)}{c} \xrightarrow{c \to \infty} \Gamma(q),
\]

Finally, we analyse the large deviations behaviour

\[
\lim_{c \to \infty} \frac{1}{c} \log P^c = - \max_{\sigma \in \langle S \rangle} \sum_{j \in J} Q_j \log \sigma_j - \sum_{j} \sum_{r} \int_{0}^{Q_j} \log \left(\frac{\Gamma'_{jr}}{a_r} \right) d\Gamma_{jr}
\]
Results on SF: Large Deviations

We take a sequence of states \((Q^c, \Gamma^c) \) where

\[
\frac{Q^c}{c} \xrightarrow{c \to \infty} Q \quad \text{and} \quad \frac{\Gamma^c(cq)}{c} \xrightarrow{c \to \infty} \Gamma(q),
\]

Finally, we analyse the large deviations behaviour

\[
\lim_{c \to \infty} \frac{1}{c} \log P^c = - \max_{\sigma \in <S>} \sum_{j \in J} Q_j \log \sigma_j - \sum_{j} \sum_{r} \int_0^{Q_j} \log \left(\frac{\Gamma'_{jr}}{a_r} \right) d\Gamma_{jr}
\]
Results on SF: Large Deviations

We take a sequence of states \((Q^c, \Gamma^c)\) where

\[
\frac{Q^c}{c} \xrightarrow{c \to \infty} Q \quad \frac{\Gamma^c(cq)}{c} \xrightarrow{c \to \infty} \Gamma(q),
\]

Finally, we analyse the large deviations behaviour

\[
\lim_{c \to \infty} \frac{1}{c} \log P^c = - \max_{\sigma \in \mathcal{S}} \sum_{j \in \mathcal{J}} Q_j \log \sigma_j - \sum_j \sum_r \int_0^{Q_j} \log \left(\frac{\Gamma'_{jr}}{a_r} \right) d\Gamma_{jr}
\]
Differentiating this Lyapunov Fn:

Proposition: For a FIFO Network under PS, for

\[
H(t) = \max_{\sigma \in \langle S \rangle} \sum_{j \in J} Q_j(t) \log \sigma_j + \sum_{j \in J} \sum_{r \in R} \int_0^{Q_j(t)} \log \left(\frac{\Gamma'_{jr}}{a_r} \right) d\Gamma_{jr}
\]

then

\[
H'(t) = -\sum_{r \in R} D'_r(t) \log \frac{D'_r(t)}{A'_r(t)} - \sum_{j \in J} A'_j(t) \log \frac{A'_j(t)}{D'_j(t)} < 0
\]
Differentiating this Lyapunov Fn:

Proposition: For A FIFO Network under PS, for

\[
H(t) = \max_{\sigma \in \langle S \rangle} \sum_{j \in J} Q_j(t) \log \sigma_j + \sum_{j \in J} \sum_{r \in R} \int_0^{Q_j(t)} \log \left(\frac{\Gamma'_{jr}}{a_r} \right) d\Gamma_{jr}
\]

then

\[
H'(t) = - \sum_{r \in R} D'_r(t) \log \frac{D'_r(t)}{A'_r(t)} - \sum_{j \in J} A'_j(t) \log \frac{A'_j(t)}{D'_j(t)} < 0
\]
Switch Networks:

(BP) BackPressure – Classical switch policy
(PS) Proportional Scheduler – New switch policy
(SF) Store-Forward – Related CTMC

One story:

PS is structurally simpler than BP

But... this talk:

SF is similar to PF and has lots of nice properties.

We study SF and postulate why PS is good:
Equilibrium, Delay, Product-Form, Lyapunov fns.
Thank you for listening!

Some References:

“Product form stationary distributions for diffusion approximations to a flow level model operating under a proportional fair sharing policy” W.N. Kang, F.P. Kelly, N.H. Lee, R.J. Williams (2007). MAMA.
